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UML 시퀀스 다이어그램

l 시퀀스 다이어그램(Sequence Diagram)

l 사용 사례가 어떻게 수행되는지 어떤 메시지가 언제 보내지는지 나타낸

그림

l 시스템의 동적인 측면을 캡처한 것

l 동적 뷰(dynamic view)

l 시간의 흐름에 따라 정리해 놓은 것

l 페이지 내려갈 수록 시간이 흐름

l 객체는 왼쪽에서 오른쪽으로 나열

l 메시지 호출의 흐름에 언제 참여하였느냐에 따라
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시퀀스 다이어그램의 요소

member:
LibraryMember book:Book :Book

Copy

borrow(book)
ok = mayBorrow()

X-Axis (objects)

Y-A
xis (tim

e)

Life Line

Object
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시퀀스 다이어그램 작성

l Step 1. 참여하는 객체를 파악
l Step 2. 파악한 객체를 X축에 나열하고 라이프라인을 그음
l Step 3. 사용사례에 기술된 이벤트 순서에 따라 객체의 메시지 호출

을 화살표로 나타냄
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객체 나타내기
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객체 사이의 메시지

l 호출한 메시지를 가진 객체에 수평 화살표로 표시

l 메시지 이름과 매개 변수를 화살표 위에 표시
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메시지

l 메시지는 수평 화살표로 표시됨
l 점선 화살표는 리턴을 표시
l 화살표 헤드의 모양으로 정상/ 비동기(asynchoronous) 표시
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:Instructor

메시지 호출의 표시

l 활성 박스(activation box) 
l 객체 라이프 라인 위에 그려짐
l 박스 위에서 객체의 호출이 이

루어짐
l 객체의 코드가 실행되고 있거
나
l 다른 객체의 메소드가 종료되
기를 기다림. 

giveTest()

:Student

l 활성 박스(activation box) 
l 객체 라이프 라인 위에 그려짐
l 박스 위에서 객체의 호출이 이

루어짐
l 객체의 코드가 실행되고 있거
나
l 다른 객체의 메소드가 종료되
기를 기다림. 
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객체의 라이프 타임

l 생성
l ‘new’라고 위에 쓴 화살표로 표시
l 생성된 객체는 다른 객체보다 조금

아래 위치

l 삭제
l 객체 라이프 라인의 끝에 X 표시

l Java 언어/ C++ 언어에서 객체의 소
멸은? 
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조건과 반복(UML 2.0)
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시퀀스 다이어그램 사례 #1
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시퀀스 다이어그램 사례 #2
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시스템의 콘트롤 형태

l 다음 시스템의 제어 흐름은 어떤 형태인가?

l 중앙 집중형

l 분산형

l 순서 다이어그램은 이런 것을 보여주는데 도움이 되는가?

l 다음 시스템의 제어 흐름은 어떤 형태인가?

l 중앙 집중형

l 분산형

l 순서 다이어그램은 이런 것을 보여주는데 도움이 되는가?
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다음 다이어그램의 제어 패턴은?
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이 다이어그램의 제어 패턴은?
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다음 시퀀스 다이어그램은?
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시퀀스 다이어그램과 코딩

l 수강 과목 신청
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시퀀스 다이어그램과 코딩

public class CourseSection 
{

// The many-1 abstraction-occurence association
private Course course;

// The 1-many association to class Registration
private List registationList;

// The following are present only to determine the state
// The initial state is ‘Planned’
private boolean open = false;
private boolean closedOrCancelled = false;
...
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시퀀스 다이어그램과 코딩
public void requestToRegister(Student student)
{
if (open)  // must be in one of the two 'Open' states
{
// The interaction specified in the sequence diagram 
Course prereq = course.getPrerequisite();
if (student.hasPassedCourse(prereq))
{

// Indirectly calls addToRegistrationList
new Registration(this, student);

}

// Check for automatic transition to 'Closed' state
if (registrationList.size() >= course.getMaximum())
{
// to ‘Closed’ state
open = false;
closedOrCancelled = true;

}
}

}
}
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왜 바로 코딩하지 않는가?

l 시퀀스 다이어그램은 코드와 매우 밀접하다. 다이어그램을 그리기 전
에 왜 바로 코딩하지 않을까?

l 좋은 시퀀스 다이어그램은 추상적 가치를 가짐
l 시퀀스 다이어그램은 언어 효과를 노린 것
l 개발자가 아닌 사람도 작성 가능
l 여러 객체를 한 페이지에서 볼 수 있어

• 이해가 쉬움
• 리뷰가 용이

l 좋은 커뮤니케이션 도구
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커뮤니케이션 다이어그램

l 인터랙션에 참여하는 객체들의 연관을 나타내고 있음
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상태 다이어그램

l 시스템에서 중요한 역할을 담당하는 클래스의 상태 변화

l 예: ATM – account 클래스
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상태 다이어그램의 요소

l 상태
l 대상이 갖는 생명주기의 한 시점
l 액션이 수행되거나 이벤트를 기다림

l 상태 변환
l 상태 사이의 이동
l 이벤트에 대한 반응

l 액션
l On Entry - 상태에 진입할 때 액션이 구동됨
l Do - 상태 안에서 액션이 수행됨
l On Event - 이벤트에 대한 반응으로 액션이 실행됨
l On Exit - 상태에서 빠져나가기 바로 전에 액션이 실행됨

l 형태: action-label / action

aState
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복합 상태

l 서브 상태로 분할 할 수 있음

l Order의 상태 변환

l 서브 상태로 분할 할 수 있음

l Order의 상태 변환
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병렬 상태

l 복합 상태 안에서 동시에 여러 개의 병렬 서브상태로 구성

l 병행 흐름은 독립적
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상태 다이어그램 그리기

1. 범위를 정한다.

2. 시작, 종료 상태를 파악한다.

3. 객체나 서브시스템이 어떤 상태들을 갖는지 찾아낸다.

4. 상태를 전환시키는 이벤트, 액션, 조건들을 파악한다.

5. 필요하면 서브상태를 이용하여 확장한다.
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상태 다이어그램의 예

On first floor

Moving up

do/moving to floor

Moving down

Go_up (floor)

Arrived
Go_up (floor)

Arrived

Activate
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Moving to
first floor

Idle

timer = 0

do/increase timer

Moving down

do/moving to floor

Go_up (floor)

Go_down (floor)

[timer = time-out]

Arrived



상태 다이어그램의 코딩

l 예> 비디오 대여 시스템의 비디오테이프 객체의 상태 변화 모델링
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UML 정리

l UML은 이래서 좋다.

l 공통 언어

• 요구, 명세, 설계를 공유할 수 있게 한다

l 비주얼 구문이 좋다

• 정보를 요약

• 개발자/기술자가 아닌 사람들에게도 이해 가능

l 도구 지원

• Visio, Rational, Eclipse, Together

• 어떤 도구는 UML 에서 코드로 자동 변환
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UML 모델링 도구

l 많이 알려진 모델링 도구
l IBM의 Rational Modeler, 마이크로소프트의 Visio, ArgoUML, 

StarUML, NetBeans UML 플러그인
l 예> StarUML
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